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Figure 2. A schematic representation of implementation personalized pharmacogenomic based treatment and healthcare system. (A)
The first step is to collect medical and patient history via a specific form followed by a buccal swab for DNA sampling for RT-PCR.
(B) RightMed R© panel comprehensive test processes the pharmacogenomic results using an algorithm. RightMed R© Advisor is being
generated here. (C) Results are then interpreted by a multi-disciplinary team. In addition to drug–gene interactions, the RightMed R©

Advisor platform checks for drug–drug, drug–food (supplement) interactions. (D) The results aid in providing better patient care, superior
therapy outcome and greater drug effectiveness while at the same time reducing the rate of adverse drug reactions.

The implication of this variant is reduced conversion of clopidogrel to its active metabolites and therefore reduced
platelet inhibition and a higher risk for recurrence of a cardiovascular event. Here, proper platelet inhibition is of
great importance due to one stent already replaced in RCA.

It is also important to mention that pantoprazole inhibits CYP2C19 and additionally decreases the levels of
clopidogrel’s active metabolites. The patient was advised to initiate therapy with prasugrel or ticagrelor, instead of
clopidogrel, as they do not undergo the same metabolism and do not have the reported drug–drug interactions
with pantoprazole [89]. Furthermore, clopidogrel increases levels of rosuvastatin which could potentially lead to
myopathy, acute renal injury and liver damage [90]. Lisinopril, an angiotensin converting enzyme inhibitor included
in his daily therapy can increase risk of hypoglycemia [91]. Therefore, the patient was advised to monitor blood
sugar levels closely if he continues to use the above-mentioned drugs concurrently.

Clinical case II
A 75-year-old patient had a fracture of the distal radial bone with the development of osteoporosis on the
same arm which led to painful sensations. Ibuprofen was introduced as a drug of choice for pain management,
however patient’s pain was not managed adequately. Therefore, a combination of tramadol and dexketoprofen was
recommended. Pantoprazole, metformin and rosuvastatin were also included in her therapeutic regimen. After
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coming to the hospital, her PGx profile was assessed. The patient’s CYP2D6 *4/*4*68 genotype corresponded
to a PM phenotype, while the other genotype CYP2C19 *2/*17 corresponded to an intermediate to normal
metabolizer phenotype. Due to the poor activity of CYP2D6, we predicted that tramadol would produce little
therapeutic response since its biotransformation into active metabolite through CYP2D6 is compromised [5]. To
assure optimal pain control, tramadol therapy was discontinued and tapentadol was introduced, which doesn’t
have relevant drug–gene interactions [92]. Furthermore, the patient’s intermediate to normal CYP2C19 activity
can lead to an increased exposure to pantoprazole. We therefore suggested a dose reduction for pantoprazole or
alternatively, a substitution with rabeprazole, a drug that has normal plasma concentrations despite the patient’s
CYP2C19 genotype [93].

Clinical case III
A 55-year-old male patient with history of untreated hypertension, hyperlipidemia, glucose intolerance and chronic
obstructive pulmonary disease suffered ST-elevation myocardial infarction after physical exertion. Upon hospital
admission, coronarography revealed total stenosis of right coronary artery, which was then successfully treated
with percutaneous coronary intervention. Creatine kinase (CK), C-reactive protein, erythrocyte sedimentation rate
(ESR), white blood cells were significantly increased. The patient was treated with anticoagulants, antiarrhythmics,
acetylsalicylic acid, antihypertensives and simvastatin (80 mg/day). Several weeks later, the patient developed
weakness of truncal muscles, most prominent in upper-body and neck, leading to head-drop and myasthenia-like
weakness. CK values increased beyond the initial values and the other laboratory values normalized. EMG of
trapezius showed myopathic changes, nerve conduction velocity (NCV) was normal. Serum CK was 850 U/L,
while myoglobin in urine was positive, as well as antibodies for 3-hydroxy-3-methylglutaryl-coenzyme A reductase
(HMGCR).

The patient’s PGx status was assessed. He had a SLCO1B1 *1A/*17 genotype, indicating a decreased function of
SLCO1B1 (intermediate metabolizer phenotype), with an increased risk of simvastatin-induced myopathy [32]. The
findings suggested both muscle-toxicity with mitochondrial dysfunction and some sort of autoimmune mechanism
involving HMGCR antibodies. Both have been described as side-effects of statin therapy (statins ‘double-hit’).
Simvastatin was, therefore, promptly removed from the therapy and L-carnitine and Co-Q10 introduced. 2 weeks
later, the patient was able to hold up his head while walking (3-4/5) and his CK serum levels have normalized
(S-CK 105 U/L), but a certain level of weakness still remained, in oscillating severity.

Clinical case IV
A 49-year-old female patient was diagnosed with major depressive disorder in 1998, and since then has been
on numerous antidepressants (ADs) without any clinical effect, including amitriptyline, maprotiline, venlafaxine,
fluvoxamine, citalopram, sertraline, sulpiride and paroxetine which is the only AD she is taking now. In 2019, after
21 years of unsucessful treatment, she received PGx testing to determine if there were any significant drug–gene
interactions (DGI).

PGx testing revealed a homozygous CYP2C19 genotype *2/*2, associated with PM phenotype with no to very low
enzyme activity, important for metabolizing amitriptyline, sertraline and citalopram [20,21]. Furthermore, venlafaxine
showed moderate DGI. Due to polymorphisms in HRT2A and kainite GRIK4 encoding for serotonin and kainite
receptors, there is significantly reduced likelihood of response to citalopram therapy [94]. CYP2D6 genotype *4/*35,
an important enzyme for metabolizing fluvoxamine and paroxetine, showed decreased activity [21]. These major
and moderate DGIs, as well as receptor polymorphisms, could explain poor clinical outcomes. The patient was
recommended to take bupropion and/or trazodone which do not undergo the aforementioned metabolic pathways
and have minimal DGIs.

Clinical case V
A 33-year-old chronic myeloid leukemia (CML) patient, came to the hospital for PGx testing. The patient was first
diagnosed with CML in 2004 and had a history of ADRs to tyrosine kinase inhibitors (TKI) imatinib, nilotinib
and dasatinib [95]. Seven years after the diagnosis of CML in 2004 and complete remission on imatinib, ADRs
first occurred. The patient reported pain in the mandible and the extremities. The patient’s therapy changed from
imatinib to nilotinib, but generalized maculopapular rash presented. It was successfully treated with antihistamines.
Nilotinib therapy was then discontinued due to planned pregnancy and the patient experienced a relapse of CML
with BCR-ABL/ABL1 transcripts of 18.9%. Dasatinib was introduced and CML was in remission. 2 years later,
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urine protein levels were elevated (6.19 g/l), as well as erythrocyte sedimentation rate (ESR = 90 mm/3.6 ks). The
diagnosis of nephrotic syndrome was established. Consequently, a reduction to dasatinib dose brought urine protein
level to normal. PGx testing determined that patient’s CYP3A4 enzyme genotype is wild type (*1/*1) associated with
extensive metabolism phenotype, which implies normal rates of TKI metabolism [96]. The finding was inconsistent
with the observed nephrotic syndrome and other reported ADRs. A possible explanation would be a transient
phenoconversion of CYP3A4 to PM phenotype, leading to accumulation of the drug in the patient’s blood, which
can be attributed to inflammation noted by elevated ESR, at the time of the nephrotic syndrome episode [97,98]. This
case shows that indicating a broader approach that recognizes genetic, clinical and epigenomic factors is required
to make an evidence-based decision on personalized therapy regimen, alongside further development of existing
guidelines.

These several case reports show the importance of PGx in providing optimal treatment to patients. By doing
PGx profiling in addition to analyzing other patient-related factors, we have not only prevented potentially severe
ADRs but also assured the best possible therapy. PGx could change the whole paradigm of clinical specialists and
contribute to modifications of their standard postulates by establishing every patient as an individual and thus,
every treatment regimen as unique.

The help of machine learning algorithm in providing best quality of care: experience from St
Catherine Specialty Hospital
As already discussed, the potential of applying AI in PGx is exciting, but challenging at the same time. Firstly,
to create an efficient AI system, foundations are crucial. In the case of St Catherine Specialty Hospital, the
foundations consist of two parts. First, the patient’s general data and complete medical history including past
and current medication use are obtained and transferred into an electronic database. The second part is the
PGx report where genotype-predicted interactions for medications, as well as drug–drug interactions and other
parameters are analyzed. The report also has to be stored electronically so it can be used at any given point
in time. At St Catherine Specialty Hospital, these two components have been implemented in everyday clinical
practice with interdisciplinary team consisting of physicians of various specialties and pharmacists. Furthermore,
proactive (www.invitae.com/en/physician/category/CAT000043/) and diagnostic genetic health screening tests
(www.invitae.com/en/physician/panelsgenes/), which analyze pathogenic genetic variants or variants of uncertain
significance, related to cancers, cardiovascular diseases and some other disorders are also being applied in routine
practice.

After patients leave the clinic, active tracking of their health status is very important. Tracking can be done by
way of smartphone applications, smart watches or other medically approved devices, as well as by routine clinic
visits. All changes in patient health and therapy status need to be updated, reported and stored in an electronic
health record to complement the above mentioned patient-related PGx and medical report. Thus, over time, we
will be able to gather data from thousands of patients in a single electronic record system, presenting an opportunity
to apply AI principles. Along with active patient tracking and by programming AI to query these electronic data
sets, we can train it to observe existing patterns, patient behaviors and health outcome changes and therefore make
new patterns and find solutions to newly formed problems and clinical enigmas. This may include which drugs to
use and and not use for a particular patient, at a particular time. We mustn’t forget the research potential of AI.
With proper training and data collection, AI can find novel correlations and patterns and give great momentum to
researchers and future findings and discoveries.

Conclusion & future perspective
Personalized medicine is the cornerstone of modern medicine. With so many hospital admissions being attributed
to a ‘one-size-fits-all’ prescribing approach and ADRs being the fourth leading cause of death in the US [99], not to
mention the huge economic implications this creates, a tailored approach for every patient is needed. At the center
of this approach should be PGxs with the goal to improve drug safety and efficacy. Furthermore, therapy for each
patient should be designed according to their personal characteristics, health status, lifestyle and pharmacogenetic
profile.

There are still challenges, however. One of them is the implementation of PGx testing in clinical practice on a
much broader level. If this were to be done, patients would easily present their PGx results to a healthcare institution
and the goal of prescribing the right drug for the right patient at the right time would be more readily achieved.
The help of AI specifically for PGx is needed so that large sums of data coming from patients who do PGx tests are
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analyzed altogether rather than case-by-case as it is done today. The results of the application of AI will promote a
better understanding of the heterogeneity in processes that contribute to how a patient reacts to a specific drug at
a specific time and dose, thus; allowing prescribers to tailor, or ‘personalize’, medicines to the nuanced and often
unique features possessed by individual patients [100].

Not only would this make the process faster, but new data on genomic variations, drug–gene, drug–drug
interactions and more could emerge, which could lead to new research and even better quality and more cost-
effective healthcare. Other challenges include the training of physicians who would need to interpret the PGx
results with AI assistance. Furthermore, ethical questions, along with protected health information breaches emerge
as a potential problem. Proper governmental legislation, policy and advocacy are needed to mitigate such risks.
Additionally, the shortcomings of PGx which are seen with the phenomenon of phenoconversion and epigenetics
still need to be addressed by the scientific community.

Although more effort is needed to implement PGx in today’s clinical practice on a broader scale, there’s undeniable
evidence that personalized medicine is the treatment approach of the future and that PGx is at the center of it, with
the benefits of cost reductions and improved quality of care which every healthcare system should value. Though the
development of AI-based technologies in biomedicine is evolving rapidly, its implementation into every day patient
care has not yet become a reality. Therefore, this is an evolutionary not a revolutionary process. We should embrace
the challenges ahead of us and use the available tools to pioneer the application of AI principles to PGx-guided
treatment. This is how future treatments will be made safer, more effective and cost-effective which, in turn, will
benefit us all.

Executive summary

The role of pharmacogenomics in therapy optimization: opportunities & limitations
• The ultimate aim of personalized medicine is to tailor medical treatment to the individual characteristics of each

patient. Pharmacogenomic (PGx) testing has been identified as cost-effective in treating patients with drugs like
irinotecan, azathioprine, warfarin, citalopram and others. Thus, PGx-guided treatment can be cost-effective and
even a cost-saving strategy.

• Even though PGx does provide valuable insights, the impact of environmental factors noticeable in epigenetic
changes and phenoconversion should also be included in the personalized medicine narrative.

Big Data in biomedicine: the emerging role of artificial intelligence
• An increasing amount of data relevant to disease symptoms, diagnostics, biomarkers, therapy, adverse effects

– among others, has been collected largely due to the availability of various diagnostic and therapeutic tools and
global informatization.

• In biomedicine artificial intelligence can provide benefits: in diagnostics; therapy management and risk
predictions; for patients so they can monitor their health status; and for healthcare systems in providing money,
time and personnel savings.

• AI requires the collection of very large data sets, legislative support and well-programmed algorithms in order to
optimize all the tools currently available or in development, which are still lacking.

Overview of PGx testing in St Catherine Specialty Hospital
• St Catherine Specialty Hospital has embraced the personalized medicine concept striving to design the best

available treatment to the patients based on their genotype.
• Patients receive detailed written and oral information about the testing protocol and are asked to sign an

informed consent form.
• The RightMed R© Comprehensive test panel covers 27 genes (CYP1A2, CYP2B6, CYP2C Cluster, CYP2C9, CYP2C19,

CYP2D6, CYP3A4, CYP3A5, CYP4F2, COMT, DPYD, DRD2, F2, F5, GRIK4, HLA-A, HLA-B, HTR2A, HTR2C, IL28B
(IFNL4), MTHFR, NUDT15, OPRM1, SLC6A4, SLCO1B1, TPMT, UGT1A1 and VKORC1) and provides
genotype-derived guidance for more than 300 commonly prescribed medications. The obtained genetic data is
interpreted by St Catherine’s counseling team who additionally take into consideration the patient’s personal,
disease and therapy history to recommend the best quality of care. The counseling team makes use of the clinical
decision support tool, RightMed Advisor, to look at potential drug–drug and drug–drug–gene interactions.

Conclusion & future perspective
• Despite some limitations of artificial intelligence at the current time, contemporary medicine should remain open

to the advancement of new technologies and try to implement them in a patient-centered approach while still
retaining a responsible sense of objectivity.

• PGx AI concept should be integrated into Electronic Health Records to provide decision support as well as to
reduce clinician burnout and improve patient care.

• Moving forward, future treatments should be safer, more effective and cost-effective which will, in turn, benefit
all of society.
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78. Sultana J, Cutroneo P, Trifirò G. Clinical and economic burden of adverse drug reactions. J. Pharmacol. Pharmacother. 4(Suppl. 1),
S73–S77 (2013).

79. Berm EJJ, Looff MD, Wilffert B, Boersma C, Annemans L, Vegter S et al. Economic evaluations of pharmacogenetic and
pharmacogenomic screening tests: a systematic review. second update of the literature. PLoS ONE 11(1), e0146262 (2016).

80. Maciel A, Cullors A, Alukowiak A, Garces J. Estimating cost savings of pharmacogenetic testing for depression in real-world clinical
settings. Neuropsychiatr Dis Treat. 14(1), 225–230 (2018).

81. World Health Organization. Depression Fact Sheet. www.who.int/

82. Mrazek DA, Hornberger JC, Altar CA, Degtiar I. A review of the clinical, economic, and societal burden of treatment-resistant
depression: 1996–2013. Psychiatr Serv. 65(8), 977–987 (2014).

83. Martinson M, Koep T. The OneOme RightMed comprehensive test: a Markov cost analysis of optimizing pharmaceutical therapy. A
White Paper developed by Technomics Research & OneOme LLC (2018).

84. Gold HT, Hall MJ, Blinder V, Schackman BR. Cost effectiveness of pharmacogenetic testing for uridine diphosphate
glucuronosyltransferase 1A1 before irinotecan administration for metastatic colorectal cancer. Cancer. 115(17), 3858–3867 (2009).

85. Verbelen M, Weale ME, Lewis CM. Cost-effectiveness of pharmacogenetic-guided treatment: are we there yet? Pharmacogenomics
J. 17(5), 395–402 (2017).

• The authors review economic evaluations for PGx by estimating the proportion of evaluations that found PGx-guided treatment
to be cost-effective or dominant over the alternative strategies. This analysis found PGx-guided treatment as a cost-effective and
even a cost-saving strategy.
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87. Fröhlich H, Balling R, Beerenwinkel N et al. From hype to reality: data science enabling personalized medicine. BMC Med. 16(1), 150
(2018).

88. OneOme. www.oneome.com

89. O’Donoghue ML, Braunwald E, Antman EM et al. Pharmacodynamic effect and clinical efficacy of clopidogrel and prasugrel with or
without a proton-pump inhibitor: an analysis of two randomised trials. Lancet 374(9694), 989–997 (2009).

90. Pinheiro LF, Franca CN, Izar MC et al. Pharmacokinetic interactions between clopidogrel and rosuvastatin: effects on vascular
protection in subjects with coronary heart disease. Int. J. Cardiol. 158(1), 125–129 (2012).

91. Herings RM, de Boer A, Stricker BH, Leufkens HG, Porsius A. Hypoglycaemia associated with use of inhibitors of angiotensin
converting enzyme. Lancet 345(8959), 1195–1198 (1995).

92. Barbosa J, Faria J, Queiros O, Moreira R, Carvalho F, Dinis-Oliveiira RJ. Comparative metabolism of tramadol and tapentadol: a
toxicological perspective. Drug Metab. Rev. 48(4), 577–592 (2016).

93. El Rouby N, Lima JJ, Johnson JA. Proton pump inhibitors: from CYP2C19 pharmacogenetics to precision medicine. Expert Opin. Drug
Metab. Toxicol. 14(4), 447–460 (2018).

94. Tansey KE, Guipponi M, Hu X et al. Contribution of common genetic variants to antidepressant response. Biol. Psychiatry 73(7),
679–682 (2013).
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