INTRODUCTION

Small and dystrophic children are at high risk of developing hepatic veno-occlusive disease (VOD) during the first 3 weeks of treatment with dactinomycin [1]. It is characterized by a rapid onset of weight gain, ascites, hepatomegaly, right upper quadrant pain, jaundice, and oliguria. Hepatic encephalopathy, fulminant hepatic failure, and respiratory distress complete the full-blown clinical picture [2]. The pathogenesis of VOD has been attributed to toxic damage of the sinusoidal endothelium, allowing erythrocyte extravasation into the space of Disse, activation of the coagulation cascade, and downstream accumulation of debris in the central vein [3].

This syndrome developed in a 2-year 9-month-old boy who was admitted to our department with a history of an abdominal mass. He was born as the second child of a twin after 35 weeks of pregnancy. With his birth weight of 1,500 g he was premature and dysmature. His early life was complicated by respiratory distress syndrome, staphylococcus sepsis, and severe hyperbilirubinemia for which he received an exchange transfusion. At a routine check-up 2 years later, a left-sided abdominal mass was found and on ultrasound (US) examination, an intrarenal tumor was seen. No other abnormalities were found during work-up, so that chemotherapy was initiated following SIOP Nephroblastoma Study protocol No. 93-01. It calls for preoperative dactinomycin and vincristine (VCR). Following the second VCR dose, the boy became febrile for 3 days (Table I). One day later he vomited five times. Seven days later he received the second course of VCR and dactinomycin which was tolerated well. He had no signs of liver dysfunction at that time. Soon after the administration of the fourth VCR dose, a distinct pattern of VOD appeared: right upper quadrant pain, jaundice, hepatomegaly, ascites, oliguria, and weight gain. Coagulation studies revealed depression of factors II, V, VII, IX, and X with normal values of factor VIII. Elevated liver enzymes and fibrin degradation products were observed as well. Hepatic encephalopathy or VOD of the brain, fulminant hepatic failure, and respiratory failure ensued rapidly along with signs of liver dysfunction with fibrinolysis, and a bleeding diathesis. He was treated unsuccessfully with heparin, fresh plasma, human albumin, fibrinogen, corticosteroids, and transfusions of erythrocytes and platelets and he died 6 days after appearance of the first symptoms.

The post-mortem examination revealed a SIOP stage I nephroblastoma, ascites (150 ml), and a congested liver (725 g) without visible obstruction of the hepatic veins. The brain was not examined. The liver revealed centrilobular hemorrhagic necrosis (Fig. 1). A reticulin stain showed obliteration of hepatic vein branches by a vary-
ing amount of sub endothelial swelling and some fine but not prominent reticulated collagen (Fig. 2).

Some of the known risk factors for VOD include high-dose anticancer drug-conditioning regimens, leukemia, or preexisting liver disease. Ortega et al. [4] evaluated 821 patients with rhabdomyosarcoma after administration of VCR, actinomycin, and cyclophosphamide. They found that 10 of them developed hepatic VOD. They also reported that the highest incidence of VOD has been linked with VCR. Two recent studies [5,6] have shown that most patients who developed VOD after treatment for malignant renal tumors were under 3 years of age. Based on the fatal outcome in our patient, we suggest that prematurity, immaturity, low birth weight, and earlier hepatic infections might also be risk factors for life-threatening VOD. If those factors are present, the doses of preoperative chemotherapy should perhaps be reduced, e.g., to two thirds of the standard amounts. Maximal care and continuous US monitoring of the liver for flow direction in the portal vein might be useful in lessening the risk of a fatal outcome [7].

REFERENCES